Let
- $K^{m\times n}\ni A=\left(a_{i j}\right)$
- $K^{n\times r}\ni B=\left(b_{j k}\right)$
- $K^{r\times s}\ni C=\left(c_{k l}\right)$
be [[matrix|matrices]] such that
- $A, B$ can be [[matrix multiplication|multiplied]]
- $B, C$ can be [[matrix multiplication|multiplied]]
Then
- $A, B C$ can be [[matrix multiplication|multiplied]]
- $A B, C$ can be [[matrix multiplication|multiplied]]
and
$
(A B) C=A(B C)
$
#### Proof
$AB$ is $m\times r$, and the $(i,k)$ element is a dot product of row $i$ of $A$ and column $k$ of $B$
$AB=\left(\begin{array}{ccc}
\mathbf a_{\text{r } 1}\cdot \mathbf b_{\text{c }1}&\ldots&\mathbf a_{\text{r } 1}\cdot \mathbf b_{\text{c }k}&\ldots&\mathbf a_{\text{r } 1}\cdot \mathbf b_{\text{c }r}\\
\vdots&\ddots&\vdots&\ddots&\vdots\\
\mathbf a_{\text{r } i}\cdot \mathbf b_{\text{c }1}&\ldots &\mathbf a_{\text{r } i}\cdot \mathbf b_{\text{c }k}&\ldots&\mathbf a_{\text{r } i}\cdot \mathbf b_{\text{c }r}\\
\vdots&\ddots&\vdots&\ddots&\vdots\\
\mathbf a_{\text{r } m}\cdot \mathbf b_{\text{c }1}&\ldots&\mathbf a_{\text{r } m}\cdot \mathbf b_{\text{c }k}&\ldots&\mathbf a_{\text{r } m}\cdot \mathbf b_{\text{c }r}
\end{array}\right)$
Multiplying this $AB$ matrix by $C$ (on the right), results in $(AB)C,$ an $m\times s$ matrix.
$(AB)C=\left(\begin{array}{ccc}
(\mathbf{ab})_{\text{r }1}\cdot\mathbf c_{\text{c }1}&\ldots& (\mathbf{ab})_{\text{r }1}\cdot\mathbf c_{\text{c }l}&\ldots&(\mathbf{ab})_{\text{r }1}\cdot\mathbf c_{\text{c }s}\\
\vdots&\ddots&\vdots&\ddots&\vdots\\
(\mathbf{ab})_{\text{r }i}\cdot\mathbf c_{\text{c }1}&\ldots& (\mathbf{ab})_{\text{r }i}\cdot\mathbf c_{\text{c }l}&\ldots&(\mathbf{ab})_{\text{r }i}\cdot\mathbf c_{\text{c }s}\\
\vdots&\ddots&\vdots&\ddots&\vdots\\
(\mathbf{ab})_{\text{r }m}\cdot\mathbf c_{\text{c }1}&\ldots& (\mathbf{ab})_{\text{r }m}\cdot\mathbf c_{\text{c }l}&\ldots&(\mathbf{ab})_{\text{r }m}\cdot\mathbf c_{\text{c }s}
\end{array}\right)$
So the $i,l$ element in $(AB)C$ is a double sum,
$(\mathbf{ab})_{\text{r }i}\cdot\mathbf c_{\text{c }l}=\sum_{k=1}^{r}\left[\sum_{j=1}^{n} a_{i j} b_{j k}\right] c_{k l}=\sum_{k=1}^{r}\left[\sum_{j=1}^{n} a_{i j} b_{j k} c_{k l}\right]$
Taking similar steps for $A(BC)$,
$\mathbf{a}_{\text{r }i}\cdot (\mathbf{bc})_{\text{c }l}=\sum_{j=1}^{n}\left[a_{i j}\sum_{k=1}^{r} b_{j k}c_{k l}\right] =\sum_{j=1}^{n}\left[\sum_{k=1}^{r} a_{i j} b_{j k} c_{k l}\right]$
And both double sums are equivalent to
$
\sum_{\tiny\begin{array}{c}1 \leqq j \leqq n\\1 \leqq k \leqq r\end{array}}a_{i j} b_{j k} c_{k l}
$
Since every element of $A(BC)$ is equal to $(AB)C$, the matrices themselves are equal: $A(BC)=(AB)C$