Let $A, B, C$ be [[matrix|matrices]].
Assume:
- $A, B$ can be [[matrix multiplication|multiplied]],
- $A, C$ can be [[matrix multiplication|multiplied]],
- $B, C$ can be [[matrix addition|added]].
Then $A$, and $B+C$ can be [[matrix multiplication|multiplied]]
$
A(B+C)=A B+A C
$
Which is verified by the [[distributive property]] of the [[dot product]] over [[vector addition]]
$\mathbf{a}_{i®}\cdot(\mathbf{b}_{©k}+\mathbf{c}_{©k})=\mathbf{a}_{i®}\cdot\mathbf{b}_{©k}+\mathbf{a}_{i®}\cdot\mathbf{c}_{©k}$