Every [[Function]] may be uniquely **decomposed** as the sum of
- an [[even function]] (the *even part*)
$f_{\mathrm{e}}(x)=\frac{f(x)+f(-x)}{2}$ and
- an [[odd function]] (the *odd part*)
$f_{\mathrm{o}}(x)=\frac{f(x)-f(-x)}{2}$
Leading to the decomposition
$f(x)=f_{\mathrm{e}}(x)+f_{\mathrm{o}}(x)$
##### Examples:
Decompose [[𝑒^x - Exponential Function]] into [[hyperbolic cosine function]] and [[hyperbolic sine function]]
$e^{x}=\underbrace{\cosh (x)}_{f_{\mathrm{e}}(x)}+\underbrace{\sinh (x)}_{f_{\mathrm{o}}(x)}$