## 45-45-90
You could use [[Pythagorean Theorem]]
Duplicate a reflection of a 45-45-90 triangle over one of its legs
![[45-45-90-triangle.svg|-noinv-dmo]]
The two traigngles are part of a larger similar triangle. The proportion of the scale factor is:
$\frac{1}{2x}=\frac{x}{1} \implies \frac{1}{2}=x^2 \implies x=\frac{\sqrt{2}}{2}$
## 30-60-90
![[30-60-90-triangle.svg|-noinv-dmo]]
## 15-75-90
Start with a [[#45-45-90]] and cut one of the $45\degree$ angles into $30\degree$ and $15\degree$. The segment that makes this cut splits the opposite side into side lengths of special right triangles [[#45-45-90]] and [[#30-60-90]]. This can be used to find the side lengths of the inner [[#15-75-90]] triangle, and then it can be scaled so that the hypotenuse is 1.
![[15-75-90-triangle.svg|-noinv-dmo]]
## 18-72-90
Start with a 36-72-72 isosceles triangle. Let the long side be 1, and bisect one of the $72\degree$ angles to create a similar triangle to the original.
![[36-72-72-isos.svg|-dmo-noinv]]
The similarity of the triangles provides a proportion that can be solved with quadratic formula:
$\begin{aligned}
\frac{x}{1}&=\frac{1-x}{x}\\ \\
x^2&=1-x\\ \\
x^2+x-1&=0\\ \\
\text{(only the positive) }x&=\frac{-1+\sqrt{5}}{2}
\end{aligned}$
Now the isosceles triangle is cut in half by its height to create the 18-72-90
![[36-72-72-into-18-72-90.svg|-noinv-dmo]]
And using [[Pythagorean Theorem]]
$\begin{aligned}
h&=\sqrt{1^2+\left(\frac{-1-\sqrt{5}}{4}\right)^2}\\
h&=\sqrt{1-\frac{6-2\sqrt5}{16}}\\
h&=\sqrt{\frac{10+2\sqrt5}{16}} \\
h&=\frac{\sqrt{10+2\sqrt5}}{4}
\end{aligned}$
## Summary
![[4-special-right-triangles.svg|-dmo-noinv]]