$a^2+b^2=c^2$
### Rearrangement Proof
![[pythagorean-theorem-rearrangement-proof.svg]]
### Similar triangles proof
$
\frac{B C}{A B}=\frac{B H}{B C} \text { and } \frac{A C}{A B}=\frac{A H}{A C} \text {. }
$
The first result equates the [[Cosine Function|cosines]] of the angles $\theta$, whereas the second result equates their sines.
These ratios can be written as
$
B C^2=A B \times B H \text { and } A C^2=A B \times A H \text {. }
$
Summing these two equalities results in
$
B C^2+A C^2=A B \times B H+A B \times A H=A B(A H+B H)=A B^2,
$
which, after simplification, demonstrates the Pythagorean theorem:
$
B C^2+A C^2=A B^2 .
$