Prove using [[Angle Sum-or-Difference Identities]]
## Double Angle Formulas
$\begin{aligned}
\sin (2 \theta) &=2 \sin \theta \cos \theta \\
\cos (2 \theta) &=\cos ^{2} \theta-\sin ^{2} \theta &&=2 \cos ^{2} \theta-1 &&=1-2 \sin ^{2} \theta \\
\tan (2 \theta) &=\frac{2 \tan \theta}{1-\tan ^{2} \theta}&&=\frac{2}{\cot\theta-\tan\theta}&&=\frac{2\cot\theta}{\cot^2\theta-1}\\
\csc(2\theta)&=2\csc\theta\sec\theta\\
\sec(2\theta)&=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}&&=\frac{\sec^2\theta\csc^2\theta}{\csc^2\theta-\sec^2\theta}
\end{aligned}$
## Half Angle Formulas
The following are a corollary from $\cos(2\theta)$, but the since there are two possible angles, the quadrant of the half-angle should be known to narrow down the result to a single answer.
$\sin \frac{\theta}{2}=\pm \sqrt{\frac{1-\cos \theta}{2}}$
$\cos \frac{\theta}{2}=\pm \sqrt{\frac{1+\cos \theta}{2}}$
$\tan \frac{\theta}{2}=\pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$
$\cos2\theta$ leads to
[[Power Reduction Identities]]