If $f$ has a derivative at $x=c$, then $f$ is continuous at $x=c$
#### Proof
Given that $f^{\prime}(c)$ exists, we must show that $\lim _{x \rightarrow c} f(x)=f(c)$, or equivalently, that $\lim _{h \rightarrow 0} f(c+h)=f(c)$. If $h \neq 0$, then
$
\begin{aligned}
f(c+h) &=f(c)+(f(c+h)-f(c)) \\
&=f(c)+\frac{f(c+h)-f(c)}{h} \cdot h
\end{aligned}
$
Now take limits as $h \rightarrow 0$. By Theorem 1 of Section 2.2,
$
\begin{aligned}
\lim _{h \rightarrow 0} f(c+h) &=\lim _{h \rightarrow 0} f(c)+\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \cdot \lim _{h \rightarrow 0} h \\
&=f(c)+f^{\prime}(c) \cdot 0 \\
&=f(c)+0 \\
&=f(c)
\end{aligned}
$