$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
#### Proof
Suppose $f(x)=a^x$
$\begin{aligned}
\frac{d}{d x}\left(a^{x}\right) &=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
&=\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
&=\lim _{h \rightarrow 0} a^{x} \cdot \frac{a^{h}-1}{h} \\
&=a^{x} \cdot \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
&=\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right) \cdot a^{x}\\
&=(\ln a) \cdot a^x
\end{aligned}$
[[Table of Common limits]]
see [[𝑒 - Euler's Number]]