### Theorem $ \frac{d}{d x} a^{x}=a^{x} \ln a \qquad a>0 $ $ \frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x} \qquad a>0 $ #### Proof Rewrite using base [[𝑒 - Euler's Number|𝑒]], and apply the [[Derivative of the natural exponential]] with [[Derivative Chain Rule|chain rule]], and then simplify back to base $a$ $ \begin{aligned} \frac{d}{d x} a^{x} &=\frac{d}{d x} e^{x \ln a} \\ &=e^{x \ln a} \cdot \frac{d}{d x}(x \ln a) \\ &=a^{x} \ln a \end{aligned} $