### Theorem
The derivative of the [[Sine Function]] is the [[Cosine Function]]:
$
\frac{d}{d x}(\sin x)=\cos x
$
#### Proof
[[Angle Sum-or-Difference Identities]]
[[Table of Common limits]]
If $f(x)=\sin x$, then
$
\begin{aligned}
\left(\sin x\right)^{\prime} &=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
&=\lim _{h \rightarrow 0} \frac{(\sin x \cos h+\cos x \sin h)-\sin x}{h} \\
&=\lim _{h \rightarrow 0} \frac{\sin x(\cos h-1)+\cos x \sin h}{h} \\
&=\lim _{h \rightarrow 0}\left(\sin x \cdot \frac{\cos h-1}{h}\right)+\lim _{h \rightarrow 0}\left(\cos x \cdot \frac{\sin h}{h}\right) \\
&=\sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h}=\sin x \cdot 0+\cos x \cdot 1=\cos x
\end{aligned}
$