### Theorem
If $u$ is a differentiable function of $x$, and $c$ is a constant, then
$
\frac{d}{d x}(c u)=c \frac{d u}{d x} .
$
In particular, if $n$ is any real number, then
$
\frac{d}{d x}\left(c x^{n}\right)=c n x^{n-1} .
$
#### Proof
$
\begin{aligned}
\frac{d}{d x} c u &=\lim _{h \rightarrow 0} \frac{c u(x+h)-c u(x)}{h} & & \begin{array}{l}
\text { Derivative definition } \\
\text { with } f(x)=c u(x)
\end{array} \\
&=c \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} & & \text { Constant Multiple Limit Property } \\
&=c \frac{d u}{d x} & & u \text { is differentiable. }
\end{aligned}
$