$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
![[angle-sum-diagram.svg]]
[[† Odd/Even Trigonometric Identities]]