For a set of non-negative numbers, the [[arithmetic mean]] will never be exceeded by the [[geometric mean]]
$\quad \sqrt{x y} \leq \frac{x+y}{2}$
#### Proof
##### Using [[Cauchy-Schwarz-Buniakowsky Inequality]]
Take the [[dot product]] of $\boldsymbol v = (\sqrt x,\sqrt y)$ and $\boldsymbol w = (\sqrt y,\sqrt x)$
$\boldsymbol v \cdot \boldsymbol w=\sqrt{xy}+\sqrt{xy}=2\sqrt{xy}
$
and know (by [[Cauchy-Schwarz-Buniakowsky Inequality]]) that it must be less than the product of the [[vector length|magnitudes]] of $\boldsymbol v$ and $\boldsymbol w$, both of which are $\sqrt{x+y}$
$\|\boldsymbol v\|=\sqrt{x+y} \qquad \|\boldsymbol w\|=\sqrt{x+y} $
$\|\boldsymbol v\|\|\boldsymbol w\|=x+y$
$\begin{aligned}
|\boldsymbol{v} \cdot \boldsymbol{w}| &\leq\|\boldsymbol v\|\|\boldsymbol w\|\\
2\sqrt{xy}&\leq x+y\\
\sqrt{xy}&\leq\frac{x+y}{2}
\end{aligned}$