https://www.youtube.com/watch?v=Kudlm4ZAQok
### Problem
$x,y,z\in\mathbb{R}$
$
\begin{aligned}
x+y+z&=1&(1) \\
x^{2}+y^{2}+z^{2}&=1&(2) \\
\min \left(x^{3}+y^{3}+z^{3}\right)&=\ ?
\end{aligned}
$
#### Solution
From the second equation, the minimum value of each term is $0$, therefor the maximum of any term must be 1. This restricts $x,y,z$ each to the interval $[-1,1]$
$
\begin{aligned}
0 &\leq \qquad x^{2}, y^{2}, z^{2} &\leq 1 \\
-1 &\leq \qquad x, y, z &\leq 1
\end{aligned}
$
Now square the first equation (1), then subtract the second equation (2)
$
\begin{aligned}
(x+y+z)^{2}&=1& \text{square }(1)
\\
x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z&=1\\
-(x^{2}+y^{2}+z^{2})\qquad\qquad\qquad\qquad &\ -1&\text{subract }(2)\\
2 x y+2 y z+2 x z&=0\\
x y+ y z+ x z&=0
\end{aligned}
$
So at least one of the [[variable|variables]] must be [[Non-Positive]]; the product pairs are either all zeroes, or a mix of positive and negative. By symmetry, allow $x\leq y\leq z$ so that $x$ is the one guaranteed to be non-positive.
$x\leq0$
Applying this to the first equation (1), we can write $y$ (or $z$) as the sum of two non-negative parts.
$\begin{aligned}
x+y+z&=1\\
y&=1-z-x\\
y&=\overset{\text{non-negative}}{\overbrace{(1-z)}}\ \ +\overset{\text{non-negative}}{\overbrace{(-x)}}
\end{aligned}$
So $y\geq0$ as well as $z\geq0$.
Now to manipulate the sum of cubes
$
\begin{aligned}
&x^{3}+y^{3}+z^{3} \\
=& x^{3}+(y+z)\left(y^{2}-y z+z^{2}\right) \\
=& x^{3}+(1-x)\left(-\frac{1}{2} y^{2}+\frac{3}{2} y^{2}-\frac{1}{2} z^{2}+\frac{3}{2} z^{2}-y z\right) \\
=& x^{3}+(1-x)\left(-\frac{1}{2}(y+z)^{2}+\frac{3}{2}\left(y^{2}+z^{2}\right)\right) \\
=& x^{3}+(1-x)\left(\frac{1}{2}\right)\left(3\left(1-x^{2}\right)-(1-x)^{2}\right) \\
=& x^{3}+\left(\frac{1-x}{2}\right)\left(3-3 x^{2}-1+2 x-x^2\right)\\
=&x^{3}+\left(\frac{1-x}{2}\right)\left(-4 x^{2}+2 x+2\right) \\
=&x^{3}+(1-x)\left(-2 x^{2}+x+1\right) \\ f(x)=&3 x^{3}-3 x^{2}+1
\end{aligned}
$
Differentiate the new function (of only *one* variable) to find where it has relative minimums
$
\begin{aligned} \frac{d}{d x}\left(3 x^{3}-3 x^{2}+1\right) &=9 x^{2}-6 x \\ &=\underset{\leq0}{\underbrace{(3 x)}}\underset{\leq0}{\underbrace{(3 x-2)}} \end{aligned}
$
Remember that $x\leq0$, and notice the derivative is positive for all of those values, so the minimum of $f(x)$ over $x\in[-1,0]$ occurs when $x=-1$
Using this in the second equation (2)
$\begin{aligned}
(-1)^2+y^2+z^2&=1\\
y^2+z^2&=0\\
y=0 \quad \text{and}\quad z &=0
\end{aligned}$
And the same fact applied to equation (1)
$\begin{aligned}
(-1)+y+z&=1\\
y+z&=2\\
\end{aligned}$
This shows that $x$ cannot take the value $-1$ since it would force either one of $y$ or $z$ to be larger than 1, and also simultaneously 0.
So back to manipulating the equations again,
$
\left\{\begin{array}{rlccl}x+y+z&=1 &\Leftrightarrow &y+z&=1-x \\ x^{2}+y^{2}+z^{2}&=1 &\Leftrightarrow &y^{2}+z^{2}&=1-x^{2}\end{array}\right.
$
Squaring the new version of the first equation,
$y^2+z^2+2yz=1-x^2-2x$
Then using a modified form of [[AM-GM Inequality]]
$y^2+z^2\geq2\sqrt{y^2z^2}$
$y^2+z^2\geq2yz$