20) $\sqrt{6 x}\left(2 x^3+\sqrt{12 x}\right)=$
$2x^3\sqrt{6x}+\sqrt{72x^2}$
$\boxed{2x^3\sqrt{6x}+6x\sqrt{2}}$
22) $\frac{4 \sqrt[3]{8 x^4}}{\sqrt[3]{-20 x^3}}$
$\frac{4 \cdot2x\sqrt[3]{x}}{-x\sqrt[3]{20}}$
$\frac{8\sqrt[3]{x}}{-\sqrt[3]{20}}$
Don't forget to rationalize: $20=2^2\cdot5$, so we need $2\cdot5^2$ to make a perfect cube.
$\frac{8\sqrt[3]{x}}{-\sqrt[3]{20}}\cdot\frac{\sqrt[3]{2\cdot5^2}}{\sqrt[3]{2\cdot5^2}}$
$\frac{8\sqrt[3]{50x}}{-10}=\boxed{\frac{4\sqrt[3]{50x}}{-5}}$
---
---
We simplify radicals because when two radical terms are simplified, their compatibility for addition/subtraction can be determined