## Problems
### 1 Vector Spaces
#### 1.1 Definitions
#### 1.2 Bases
#### 1.3 Dimension of a Vector Space
#### 1.4 Sums and Direct Sums
### 2 Matrices
#### 2.1 The Space of Matrices
#### 2.2 Linear Equations
#### 2.3 Multiplication of Matrices
### 3 Linear Mappings
#### 3.1 Mappings
#### 3.2 Linear Mappings
#### 3.3 The Kernel and Image of a Linear Map
#### 3.4 Composition and Inverse of Linear Mappings
#### 3.5 Geometric Applications
### 4 Linear Maps and Matrices
#### 4.1 The Linear Map Associated with a Matrix
#### 4.2 The Matrix Associated with a Linear Map
#### 4.3 Bases, Matrices, and Linear Maps
### 5 Scalar Products and Orthogonality
#### 5.1 Scalar Products
#### 5.2 Orthogonal Bases, Positive Definite Case
#### 5.3 Application to Linear Equations; the Rank
#### 5.4 Bilinear Maps and Matrices
#### 5.5 General Orthogonal Bases
#### 5.6 The Dual Space and Scalar Products
#### 5.7 Quadratic Forms
#### 5.8 Sylvester's Theorem
### 6 Determinants
#### 6.1 Determinants of Order 2
#### 6.2 Existence of Determinants
#### 6.3 Additional Properties of Determinants
#### 6.4 Cramer's Rule
#### 6.5 Triangulation of a Matrix by Column Operations
#### 6.6 Permutations
#### 6.7 Expansion Formula and Uniqueness of Determinants
#### 6.8 Inverse of a Matrix
#### 6.9 The Rank of a Matrix and Subdeterminants
### 7 Symmetric, Hermitian, and Unitary Operators
#### 7.1 Symmetric Operators
#### 7.2 Hermitian Operators
#### 7.3 Unitary Operators
### 8 Eigenvectors and Eigenvalues
#### 8.1 Eigenvectors and Eigenvalues
#### 8.2 The Characteristic Polynomial
#### 8.3 Eigenvalues and Eigenvectors of Symmetric Matrices
#### 8.4 Diagonalization of a Symmetric Linear Map
#### 8.5 The Hermitian Case
#### 8.6 Unitary Operators
### 9 Polynomials and Matrices
#### 9.1 Polynomials
#### 9.2 Polynomials of Matrices and Linear Maps
### 10 Triangulation of Matrices and Linear Maps
#### 10.1 Existence of Triangulation
#### 10.2 Theorem of Hamilton-Cayley
#### 10.3 Diagonalization of Unitary Map
### 11 Polynomials and Primary Decomposition
#### 11.1 The Euclidean Algorithm
#### 11.2 Greatest Common Divisor
#### 11.3 Unique Factorization
#### 11.4 Application to the Decomposition of a Vector Space
#### 11.S Schur's Lemma
#### 11.6 The Jordan Normal Form
### 12 Convex Sets
#### 12.1 Definitions
#### 12.2 Separating Hyperplanes
#### 12.3 Extreme Points and Supporting Hyperplanes
#### 12.4 The Krein-Milman Theorem
### Appendix 1 Complex numbers
1. Express the following complex numbers in the form $x + iy$, where $x,$ $y$ are real numbers.
1. $(-1+3 i)^{-1}$
2. $(1+i)(1-i)$
3. $(1+i) i(2-i)$
4. $(i-1)(2-i)$
5. $(7+\pi i)(\pi+i)$
6. $(2 i+1) \pi i$
7. $(\sqrt{2}+i)(\pi+3 i)$
8. $(i+1)(i-2)(i+3)$
2. Express the following complex numbers in the form $x + iy$, where $x,$ $y$ are real numbers.
1. $(1+i)^{-1}$
2. $\frac{1}{3+i}$
3. $\frac{2+i}{2-i}$
4. $\frac{1}{2-i}$
5. $\frac{1+i}{i}$
6. $\frac{i}{1+i}$
7. $\frac{2 i}{3-i}$
8. $\frac{1}{-1+i}$
3. Let $\alpha$ be a complex number $\neq 0$. What is the absolute value of $\alpha / \bar{\alpha} ?$ What is $\bar{\alpha} ?$
4. Let $\alpha, \beta$ be two complex numbers. Show that $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$ and that
$
\overline{\alpha+\beta}=\bar{\alpha}+\bar{\beta}
$
5. Show that $|\alpha \beta|=|\alpha||\beta|$
6. Define addition of $n$-tuples of complex numbers componentwise, and multiplication of $n$-tuples of complex numbers by complex numbers componentwise also. If $A=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $B=\left(\beta_{1}, \ldots, \beta_{n}\right)$ are $n$-tuples of complex numbers, define their product $\langle A, B\rangle$ to be $\alpha_{1} \bar{\beta}_{1}+\cdots+\alpha_{n} \bar{\beta}_{n}$ (note the complex conjugation!). Prove the following rules:
- HP 1. $\langle A, B\rangle=\overline{\langle B, A\rangle}$.
- HP 2. $\langle A, B+C\rangle=\langle A, B\rangle+\langle A, C\rangle$.
- HP 3. If $\alpha$ is a complex number, then$\langle\alpha A, B\rangle=\alpha\langle A, B\rangle \quad \text { and }\langle A, \alpha B\rangle=\bar{\alpha}\langle A, B\rangle$
- HP 4. If $A=O$ then $\langle A, A\rangle=0$, and otherwise $\langle A, A\rangle>0$
7. We assume that you know about the functions sine and cosine, and their addition formulas. Let $\theta$ be a real number.
1. Define $e^{i \theta}=\cos \theta+i \sin \theta$
2. Show that if $\theta_{1}$ and $\theta_{2}$ are real numbers, then$e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}$ Show that any complex number of absolute value 1 can be written in the form $e^{i t}$ for some real number $t$.
3. Show that any complex number can be written in the form $r e^{i \theta}$ for some real numbers $r, \theta$ with $r \geqq 0$.
4. If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ with real $r_{1}, r_{2} \geqq 0$ and real $\theta_{1}, \theta_{2}$, show that $z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$
5. If $z$ is a complex number, and $n$ an integer
gt;0$, show that there exists a complex number $w$ such that $w^{n}=z$. If $z \neq 0$ show that there exists $n$ distinct such complex numbers $w$. (Hint: If $z=r e^{i \theta}$, consider first $r^{1 / n} e^{i \theta / n}$.)
8. Assuming the complex numbers algebraically closed, prove that every irreducible polynomial over the real numbers has degree 1 or 2 . (Hint: Split the polynomial over the complex numbers and pair off complex conjugate roots.)
### Appendix 2 Iwasawa Decomposition and Others