As usual. I mostly care about the problems
## 1.1 Set Theory and Logic
### 1.1.1 Fundamental Concepts
1. Check the distributive laws for $\cup$ and $\cap$ and DeMorgan's laws.
2. Determine which of the following statements are true for all sets $A, B, C$, and $D$. If a double implication fails, determine whether one or the other of the possible implications holds. If an equality fails, determine whether the statement becomes true if the "equals" symbol is replaced by one or the other of the inclusion symbols $\subset$ or $\supset$.
- (a)
$A \subset B$ and $A \subset C \Leftrightarrow A \subset(B \cup C)$
- (b)
$A \subset B$ or $A \subset C \Leftrightarrow A \subset(B \cup C)$
- (c)
$A \subset B$ and $A \subset C \Leftrightarrow A \subset(B \cap C)$
- (d)
$A \subset B$ or $A \subset C \Leftrightarrow A \subset(B \cap C)$
- (e)
$A-(A-B)=B$
- (f)
$A-(B-A)=A-B$
- (g)
$A \cap(B-C)=(A \cap B)-(A \cap C)$
- (h)
$A \cup(B-C)=(A \cup B)-(A \cup C)$
- (i)
$(A \cap B) \cup(A-B)=A$.
- (j)
$A \subset C$ and $B \subset D \Rightarrow(A \times B) \subset(C \times D)$
- (k)
The converse of (j).
- (l)
The converse of $(\mathrm{j})$, assuming that $A$ and $B$ are nonempty.
- (m)
$(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$
- (n)
$(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$
- (o)
$A \times(B-C)=(A \times B)-(A \times C)$
- (p)
$(A-B) \times(C-D)=(A \times C-B \times C)-A \times D$
- (q)
$(A \times B)-(C \times D)=(A-C) \times(B-D)$
3. Write the contrapositive and converse of the following statement: "If $x<0$, then $x^{2}-x>0$," and determine which (if any) of the three statements are true.
- Do the same for the statement "If $x>0$, then $x^{2}-x>0$."
4. Let $A$ and $B$ be sets of real numbers. Write the negation of each of the following statements:
- (a)
For every $a \in A$, it is true that $a^{2} \in B$
- (b)
For at least one $a \in A$, it is true that $a^{2} \in B$
- (c)
For every $a \in A$, it is true that $a^{2} \notin B$
- (d)
For at least one $a \notin A$, it is true that $a^{2} \in B$.
5. Let $\mathcal{A}$ be a nonempty collection of sets. Determine the truth of each of the following statements and of their converses:
- (a)
$x \in \bigcup_{A \in \mathcal{A}} A \Rightarrow x \in A$ for at least one $A \in \mathcal{A}$.
- (b)
$x \in \bigcup_{A \in \mathcal{A}} A \Rightarrow x \in A$ for every $A \in \mathcal{A}$.
- (c)
$x \in \bigcap_{A \in \mathcal{A}} A \Rightarrow x \in A$ for at least one $A \in \mathcal{A}$.
- (d)
$x \in \bigcap_{A \in \mathcal{A}} A \Rightarrow x \in A$ for every $A \in \mathcal{A}$.
6. Write the contrapositive of each of the statements of Exercise 5.
7. Given sets $A, B$, and $C$, express each of the following sets in terms of $A, B$, and $C$, using the symbols $\cup, \cap$, and $-$.$\begin{aligned} D &=\{x \mid x \in A \text { and }(x \in B \text { or } x \in C)\} \\ E &=\{x \mid(x \in A \text { and } x \in B) \text { or } x \in C\} \\ F &=\{x \mid x \in A \text { and }(x \in B \Rightarrow x \in C)\} \end{aligned}$
8. If a set $A$ has two elements, show that $\mathcal{P}(A)$ has four elements. How many elements does $\mathcal{P}(A)$ have if $A$ has one element? Three elements? No elements? Why is $\mathcal{P}(A)$ called the power set of $A$?
9. Formulate and prove DeMorgan's laws for arbitrary unions and intersections.
10. Let $\mathbb{R}$ denote the set of real numbers. For each of the following subsets of $\mathbb{R} \times \mathbb{R}$, determine whether it is equal to the cartesian product of two subsets of $\mathbb{R}$.
-
(a) $\{(x, y) \mid x$ is an integer $\}$
-
(b) $\{(x, y) \mid 0<y \leq 1\}$
-
(c) $\{(x, y) \mid y>x\}$
-
(d) $\{(x, y) \mid x\notin \mathbb{Z},\ y\in\mathbb{Z}\}$
- (e) $\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$
### 1.1.2 Functions
### 1.1.3 Relations
### 1.1.4 The Integers and the Real Numbers
### 1.1.5 Cartesian Products
### 1.1.6 Finite Sets
### 1.1.7 Countable and Uncountable Sets
### 1.1.8 The Principle of Recursive Definition
### 1.1.9 Infinite Sets and the Axiom of Choice
### 1.1.10 Well-Ordered Sets
### 1.1.11 The Maximum Principle
Supplementary Exercises: Well-Ordering
Chapter 2 Topological Spaces and Continuous Functions
12 Topological Spaces
13 Basis for a Topology
14 The Order Topology
15 The Product Topology on X × Y
16 The Subspace Topology
17 Closed Sets and Limit Points
18 Continuous Functions
19 The Product Topology
20 The Metric Topology
21 The Metric Topology (continued)
22 The Quotient Topology
Supplementary Exercises: Topological Groups
Chapter 3 Connectedness and Compactness
23 Connected Spaces
24 Connected Subspaces of the Real Line
25 Components and Local Connectedness
26 Compact Spaces
27 Compact Subspaces of the Real Line
28 Limit Point Compactness
29 Local Compactness
Supplementary Exercises: Nets