### Problem
Simplify
$
\tan x+2 \tan 2 x+4 \tan 4 x+8 \cot 8 x
$
The answer will be a trigonometric function of some simple function of $x$.
#### Solution
Using [[Double-or-Half Angle Identities]] formula for tangent, starting at the right.
$\tan x+2 \tan 2 x+4 \tan 4 x+\frac{4\left(1-\tan ^{2} 4 x\right)}{\tan 4 x}$
$\tan x+2 \tan 2 x+\frac{4}{\tan 4 x}$
$\tan x+2 \tan 2 x+\frac{2\left(1-\tan ^{2} 2 x\right)}{\tan 2 x}$
$\tan x+\frac{2}{\tan 2 x}$
$\tan x+\frac{1-\tan ^{2} x}{\tan x}$
$\frac{1}{\tan x}$
$\boxed{\cot x}$