The **zero vector space** [[vector space]] whose only [[Element of a Set|element]] is [[zero vector]]
$\set{\boldsymbol{0}}$
It is certainly the most simple vector space.
Given $a,b\in F$, the zero vector space has
- [[vector addition]]
- *Associativity*
- $\mathbf{0}+(\mathbf{0}+\mathbf{0})=(\mathbf{0}+\mathbf{0})+\mathbf{0}$
- *Commutativity*
- $\mathbf{0}+\mathbf{0}=\mathbf{0}+\mathbf{0}$
- *Identity*
- $\exists\mathbf0\in \set{\mathbf0}\ :\ \mathbf{0+0=0}\qquad\forall\mathbf{0}\in \set{\mathbf0}$
- *Inverse*
- $\forall\mathbf{0}\in \set{\mathbf0}\exists (\mathbf0)\in \set{\mathbf0} : \mathbf{0}+(\mathbf{0})=0$
- [[scalar multiplication]] $F \times \set{\mathbf0} \rightarrow \set{\mathbf0}$
- *Compatiblity* with the multiplication from $F$
- $a(b \mathbf{0})=(a b) \mathbf{0}$
- *Identity*
- $1 \cdot\mathbf{0}=\mathbf{0}$, where 1 denotes the multiplicative identity in $F$, but literally any number works
- *Distributivity*
- Scalar to vector addition
- $a(\mathbf{0}+\mathbf{0})=a \mathbf{0}+a \mathbf{0}$
- Vector to field addition
- $(a+b) \mathbf{0}=a \mathbf{0}+b \mathbf{0}$