A **vector space** over a [[field]] $F$ is
- a set $V$ (which contains the [[Vector|vectors]])
- two closed [[binary operations]] which are closed over $V$
- [[vector addition]] $+: V \times V \rightarrow V$
- *Associativity*
- $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
- *Commutativity*
- $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- *Identity*
- $\exists\mathbf0\in V\ :\ \mathbf{v+0=v}\qquad\forall\mathbf{v}\in V$
- *Inverse*
- $\forall\mathbf{v}\in V\exists -\mathbf{v}\in V : v+(\mathbf{-v})=0$
- [[scalar multiplication]] $F \times V \rightarrow V$
- *Compatiblity* with the multiplication from $F$
- $a(b \mathbf{v})=(a b) \mathbf{v}$
- *Identity*
- $1 \mathbf{v}=\mathbf{v}$, where 1 denotes the multiplicative identity in $F$
- *Distributivity*
- Scalar to vector addition
- $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$
- Vector to field addition
- $(a+b) \mathbf{v}=a \mathbf{v}+b \mathbf{v}$