Let $K$ be a [[field]].
Let $A=\left(a_{i j}\right)\in K^{m\times n}$ be a [[matrix]] called the [[matrix of coefficients]]
Let $B=\left(b_{i j}\right)\in K^{m\times 1}$ be the [[column vector]] of constants
Let $X=(x_i)\in K^{n\times1}$ be the *solution vector* of unknowns
A **system of linear equations** is collection of equations
$\begin{cases}
a_{11} x_{1}&+&\cdots&+&a_{1 n} x_{n}&&=b_{1}\\
a_{21} x_{1}&+&\cdots&+&a_{2 n} x_{n}&&=b_{2}\\
&&\ \ \vdots&&&&\ \vdots\\
a_{m 1} x_{1}&+&\cdots&+&a_{m n} x_{n}&&=b_{m}\end{cases}$
Which can be rewritten
$x_{1}\left(\begin{array}{c}a_{11} \\ \vdots \\ a_{m 1}\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}a_{1 n} \\ \vdots \\ a_{m n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right)$