Let $f$ be a function defined on the interval $(a, c]$. Then $f$ is continuous from the left
at the number $c$ if
$
\lim _{x \rightarrow c^{-}} f(x)=f(c)
$
Let $f$ be a function defined on the interval $[c, b)$. Then $f$ is continuous from the right
at the number $c$ if
$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$