#### Negation (not)
For a proposition $A$, $\neg A$ will represent the **negation**.
|$A$|$\neg A$|
|---|---|
|T|F|
|F|T|
A proposition and its negation cannot be true at the same time
Examples:
1. $A$ = The hat is on my head;
$\neg A$ = The hat is not on my head.
#### Conjunction "and"
For 2 propositions A and B, $A \land B$ will represent the **conjunction**.
|$A$|$B$|$A\land B$|
|---|---|----------|
|T|T|T|
|T|F|F|
|F|T|F|
|F|F|F|
Examples:
1. $A:x+1>x$ (True)
$B: 2+1=3$ (True)
$A\land B: 3>2$ (True)
2. $A:$ Tubas are musical instruments (True-ba)
$B:$ All tubas are made of diamonds (False)
$A \land B:$ Tubas are musical instruments made of diamonds (False) Tu-bad...
#### Disjunction (Or)
For 2 propositions A and B, $A \lor B$ will represent the **disjunction**.
|$A$|$B$|$A\lor B$|
|---|---|----------|
|T|T|T|
|T|F|T|
|F|T|T|
|F|F|F|
#### Conditional (If-Then)
For 2 Propositions A and B, $A\rightarrow B$ will represent the **conditional**
|$A$|$B$|$A\rightarrow B$|
|---|---|----------|
|T|T|T|
|T|F|F|
|F|T|T|
|F|F|T|
#### Biconditional (If and only If)
For 2 Propositions A and B, $A\leftrightarrow B$ will represent the **biconditional**
|$A$|$B$|$A\rightarrow B$|
|---|---|----------|
|T|T|T|
|T|F|F|
|F|T|F|
|F|F|T|
If the biconditional of two statements is a [[Tautology]], then $A$ and $B$ are [[Logical Equivalence|equivalent]]
It is equivalent to a [[#Conjunction and|conjunction]] of two [[#Conditional If-Then|conditionals]]