A **deduction rule** allows conversion of true propositions into other true propositions.
#### Modus Ponens
Modus Ponens: Latin for "Method of affirming"
If $A\rightarrow B$ is True and $\neg $ is True, then $\neg A$ is True
$(A\rightarrow B) \land A \implies B $
#### Modus Tollens
Modus Tollens: Latin for "Method of denying"
If $A\rightarrow B$ is True and $A$ is True, then $B$ is True
$(A\rightarrow B) \land \neg B \implies \neg A$
#### Chain Syllogism
If $A \rightarrow B$ is True and $B \rightarrow C$ is True, then $A \rightarrow C$ is True
$(A\rightarrow B) \land (B\rightarrow C) \implies A\rightarrow C $
#### Reductio ad absurdum
If $A \rightarrow B$ is True and $A \rightarrow \neg B$ is True, then $\neg A$ is True
$(A\rightarrow B) \land (A\rightarrow \neg B) \implies \neg A$
Useful for proof by contradiction