### Notation
$e^x = \exp(x)$
### Definitions
$\begin{aligned}
e^{x}&=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}\\
&=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\cdots\\
&=1+\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} \frac{x}{i}\right)
\\&=\frac{1}{1-\frac{x}{1+x-\frac{\frac{1}{2} x}{1+\frac{1}{2} x-\frac{\frac{1}{3} x}{1+\frac{1}{3} x-\frac{\frac{1}{4} x}{1+\frac{1}{4} x-\ddots}}}}}\\
&=\frac{1}{1-\frac{x}{1+x-\frac{2 x}{2+x-\frac{2 x}{3+x-\frac{3 x}{4+x-\ddots}}}}}
\end{aligned}$
https://en.wikipedia.org/wiki/Characterizations_of_the_exponential_function
from [[𝑒 - Euler's Number]]