1. Solve: $3+a / 3=6+2 / 3$ a. $11 / 3$ b. 11 c. $13 / 3$ d. 13 e. NOTA 2. If $\frac{5 x}{2 y}=12$, find the value of $\frac{5 x-6 y}{2 y}$ a. 3 b. 6 c. 9 d. 12 e. NOTA 3. The solution set of $|-3 x+ 1|>5$ is a. $x<2$ b. $x<-4 / 3$ c. $x<-2$ or $x>4 / 3$ d. $x<-4 / 3$ or $x>2$ e. NOTA 4. Find the remainder when $x^2-2 x-5$ is divided by $x-2$. a. $-5$ b. $-3$ c. 3 d. 29 e. NOTA 5. Find the midpoint of $\overline{A B}$, where $A(-1,3)$ and $B(4,-2)$ are the endpoints. a. $(3 / 2,1 / 2)$ b. $(5 / 2,-5 / 2)$ c. $(-5 / 2,5 / 2)$ d. $(2,-1)$ e. NOTA 6. Solve for ${x}: 6 {x}^2+3 {x}-3=0$ a. $\{-1 / 2,1\}$ b. $\{-1,1 / 2\}$ c. $\{1 / 2,1\}$ d. $\{-1 / 2,-1\}$ e. NOTA 7. If $g(x)=3 x^2+1$ and $p(x)=2 x-3, g[p(x)]$ is a. $4\left(12 x^2-9 x+7\right)$ b. $6\left(2 x^2-6 x+5\right)$ c. $6 x^2-1$ d. $2\left(3 x^2-2\right)$ e. NOTA 8. Find the value of $|5-12 i|$ where $i=\sqrt{-1}$ a. $\sqrt{119}$ b. $-\sqrt{119}$ c. 13 d. $-13$ e. NOTA 9. Solve: $3 x^2+x-2 \geq 0$ a. $x \geq 2 / 3$ and $x \leq-1$ b. $x \geq 2 / 3$ or $x \leq-1$ c. $x \leq-2 / 3$ and $x \geq 1$ d. $x \leq-2 / 3$ or $x \geq 1$ e. NOTA 10. Solve for $x$ and $y$ for $3 i y=-2 x+4+6 i$, where $i=\sqrt{-1}$ a. $(4,2)$ b. $(2,-2)$ c. $(2,2)$ d. $(2,6)$ e. NOTA 11. Solve for ${x}:(3 / 4)^{{x}^2+1}=(16 / 9)^{{x}}$ a. 1 b. $-1$ c. 2 d. $-2$ e. NOTA 12. For what values of ${k}$ will $2 {x}^2-{3 x + k}=0$ have two distinct real roots? a. ${k}<9 / 8$ b. ${k}>9 / 8$ c. ${k}<-9 / 8$ d. $k>-9 / 8$ e. NOTA 13. Find the domain for $f(x)=\sqrt{\frac{2}{\left(-x^2+7 x-12\right)}}$ a. $3>x>-4$ b. $-3>x>-4$ c. $3<x<4$ d. $-3<x<-4$ e. NOTA 14. Find $\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]^{-1}$ a. $\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ b. $\left[\begin{array}{cc}-2 & -5 \\ -3 & -8\end{array}\right]$ c. $\left[\begin{array}{rr}2 & -5 \\ -3 & 8\end{array}\right]$ d. $\left[\begin{array}{rr}8 & -5 \\ -3 & 2\end{array}\right]$ e. NOTA 15. If ${f}({x})=3^x {x}$, , then ${f}^{-1}(x)=$ a. $3^x+8$ b. $3^x-8$ c. $\log _3(x-8)$ d. $\log _3(x+8)$ e. NOTA 16. Change $2435_6$ to base 8 . a. $4657_8$ b. $1027_8$ c. $1117_8$ d. $1127_8$ e. NOTA 17. Find $8^{\sqrt{3}}+\sqrt{5} \cdot 16^{\sqrt{12}+\sqrt{20}}$ a. $211 \sqrt{3}+11 \sqrt{5}$ b. $2^{24 \sqrt{3}}+24 \sqrt{5}$ c. $2^{11 \sqrt{3}+11 \sqrt{5}}$ d. $128^{60}$ e. NOTA 18. Given $f(x)=\log _5 x$, then $f(5 x)-f(x / 5)=$ a. 0 b. 1 c. 2 d. 5 e. NOTA 19. $3 x+2 y-\quad z=4$ $2 x+5 y-2 z=5 \quad 6 x+6 y+6 z=?$ $4 {x}+2 {y}+12 {z}=27$ a. 18 b. 24 c. 30 d. 36 e. NOTA 20. Find the values of ${k}$ if one root is twice the other in ${x}^2 \cdot {kx}+18=0$ a. 3 b. 6 c. 9 d. 12 e. NOTA 21. A tank can be filled in nine hours by one pipe, in 12 hours by a second pipe, and can be drained when full by a third pipe, in 15 hours. How long would it take to fill the tank if it is empty, and if all pipes are in operation? a. $719 / 23 \mathrm{hrs}$ b. $10.5 \mathrm{hrs}$ c. $1239 / 47 \mathrm{hrs}$ d. Tank never fills e. NOTA 22. A theater has seats for 500 people. It is filled to capacity for each show and tickets cost $\$ 3.00$ per show. She estimates that for each $\$ .20$ increase in price, 25 fewer people will attend. What ticket price will maximize her income? a. $\$ 3.20$ b. $\$ 3.50$ c. $\$ 3.70$ d. $\$ 3.75$ e. NOTA 23. Solve for $x:\left(4 \log _k x\right)\left(\log _4 k\right)=12$ a. 3 b. 4 c. 16 d. 64 e. NOTA 24. Characteristic of $\log _3 5000$ ? a. 6 b. 7 c. 8 d. 9 e. NOTA 25. Find the equation of the parabola with its vertex at $(3,5)$ and its focus at $(3,2)$. a. $(y-5)^2=-8(x-3)$ b. $(y-5)^2=8(x-3)$ c. $(x-3)^2=-12(y-5)$ d. $(x-3)^2=12(y-5)$ e. NOTA 26. Solve for $p: p r r=\frac{1}{q}$ a. $q r /(r-q)$ b. $(r-q) / q r$ c. ${qr}$ d. $q r /(q-r)$ e. NOTA 27. $\sqrt[6]{16}+\sqrt[6]{4}$ a. $\sqrt[6]{2}$ b. $\sqrt[6]{4}$ c. $6 \sqrt{8}$ d. $2\left({ }^6 \sqrt{2}\right)$ e. NOTA 28. How many fourths is $262 / 3 \%$ ? a. $1 / 4$ b. $3 / 4$ c. $4 / 15$ d. $16 / 15$ e. NOTA 29. Simplify: $\frac{6}{4+\sqrt{2}}$ a. $\frac{12-6 \sqrt{2}}{7}$ b. $\frac{4-\sqrt{2}}{2}$ c. $\frac{4-\sqrt{2}}{3}$ d. $\frac{12-3 \sqrt{2}}{7}$ e. NOTA 30. If $f(x)=x^4+2 x^3-x^2+c x+k$, find $c$ such that $f(1)=0$ and $f(-1)=0$ a. $-2$ b. 0 c. 1 d. 2 e. NOTA