The longest professional tennis match lasted a total of 11 hours and 5 minutes. How many minutes is that? $\textbf{(A) } 605 \qquad\textbf{(B) } 655\qquad\textbf{(C) } 665\qquad\textbf{(D) } 1005\qquad \textbf{(E) } 1105$ [[2016 AMC 8 Problems/Problem 1|Solution ]] ## Problem 2 In rectangle $ABCD$, $AB=6$ and $AD=8$. Point $M$ is the midpoint of $\overline{AD}$. What is the area of $\triangle AMC$? ![[2016_AMC_8_Problems_Problem2.svg]] $\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24$ [[2016 AMC 8 Problems/Problem 2|Solution ]] ## Problem 3 Four students take an exam. Three of their scores are $70, 80,$ and $90$. If the average of their four scores is $70$, then what is the remaining score? $\textbf{(A) }40\qquad\textbf{(B) }50\qquad\textbf{(C) }55\qquad\textbf{(D) }60\qquad \textbf{(E) }70$ [[2016 AMC 8 Problems/Problem 3|Solution ]] ## Problem 4 When Cheenu was a boy he could run $15$ miles in $3$ hours and $30$ minutes. As an old man he can now walk $10$ miles in $4$ hours. How many minutes longer does it take for him to travel a mile now compared to when he was a boy? $\textbf{(A) }6\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad \textbf{(E) }30$ [[2016 AMC 8 Problems/Problem 4|Solution ]] ## Problem 5 The number $N$ is a two-digit number. • When $N$ is divided by $9$, the remainder is $1$. • When $N$ is divided by $10$, the remainder is $3$. What is the remainder when $N$ is divided by $11$? $\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }7$ [[2016 AMC 8 Problems/Problem 5|Solution ]] ## Problem 6 The following bar graph represents the length (in letters) of the names of 19 people. What is the median length of these names? ![[2016_AMC_8_Problems_Problem6.svg]] $\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }7$ [[2016 AMC 8 Problems/Problem 6|Solution ]] ## Problem 7 Which of the following numbers is not a perfect square? $\textbf{(A) }1^{2016}\qquad\textbf{(B) }2^{2017}\qquad\textbf{(C) }3^{2018}\qquad\textbf{(D) }4^{2019}\qquad \textbf{(E) }5^{2020}$ [[2016 AMC 8 Problems/Problem 7|Solution ]] ## Problem 8 Find the value of the expression $100-98+96-94+92-90+\cdots+8-6+4-2.$$\textbf{(A) }20\qquad\textbf{(B) }40\qquad\textbf{(C) }50\qquad\textbf{(D) }80\qquad \textbf{(E) }100$ [[2016 AMC 8 Problems/Problem 8|Solution ]] ## Problem 9 What is the sum of the distinct prime integer divisors of $2016$? $\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }16\qquad\textbf{(D) }49\qquad \textbf{(E) }63$ [[2016 AMC 8 Problems/Problem 9|Solution ]] ## Problem 10 Suppose that $a * b$ means $3a-b.$ What is the value of $x$ if $2 * (5 * x)=1$ $\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14.$ [[2016 AMC 8 Problems/Problem 10|Solution ]] ## Problem 11 Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is $132.$ $\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12$ [[2016 AMC 8 Problems/Problem 11|Solution ]] ## Problem 12 Jefferson Middle School has the same number of boys and girls. $\frac{3}{4}$ of the girls and $\frac{2}{3}$ of the boys went on a field trip. What fraction of the students on the field trip were girls? $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}$ [[2016 AMC 8 Problems/Problem 12|Solution ]] ## Problem 13 Two different numbers are randomly selected from the set $\{ - 2, -1, 0, 3, 4, 5\}$ and multiplied together. What is the probability that the product is $0$? $\textbf{(A) }\dfrac{1}{6}\qquad\textbf{(B) }\dfrac{1}{5}\qquad\textbf{(C) }\dfrac{1}{4}\qquad\textbf{(D) }\dfrac{1}{3}\qquad \textbf{(E) }\dfrac{1}{2}$ [[2016 AMC 8 Problems/Problem 13|Solution ]] ## Problem 14 Karl's car uses a gallon of gas every $35$ miles, and his gas tank holds $14$ gallons when it is full. One day, Karl started with a full tank of gas, drove $350$ miles, bought $8$ gallons of gas, and continued driving to his destination. When he arrived, his gas tank was half full. How many miles did Karl drive that day? $\textbf{(A)}\mbox{ }525\qquad\textbf{(B)}\mbox{ }560\qquad\textbf{(C)}\mbox{ }595\qquad\textbf{(D)}\mbox{ }665\qquad\textbf{(E)}\mbox{ }735$ [[2016 AMC 8 Problems/Problem 14|Solution ]] ## Problem 15 What is the largest power of $2$ that is a divisor of $13^4 - 11^4$? $\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128$ [[2016 AMC 8 Problems/Problem 15|Solution ]] ## Problem 16 Annie and Bonnie are running laps around a $400$-meter oval track. They started together, but Annie has pulled ahead because she runs $25\%$ faster than Bonnie. How many laps will Annie have run when she first passes Bonnie? $\textbf{(A) }1\dfrac{1}{4}\qquad\textbf{(B) }3\dfrac{1}{3}\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }25$ [[2016 AMC 8 Problems/Problem 16|Solution ]] ## Problem 17 An ATM password at Fred's Bank is composed of four digits from $0$ to $9$, with repeated digits allowable. If no password may begin with the sequence $9,1,1,$ then how many passwords are possible? $\textbf{(A)}\mbox{ }30\qquad\textbf{(B)}\mbox{ }7290\qquad\textbf{(C)}\mbox{ }9000\qquad\textbf{(D)}\mbox{ }9990\qquad\textbf{(E)}\mbox{ }9999$ [[2016 AMC 8 Problems/Problem 17|Solution ]] ## Problem 18 In an All-Area track meet, $216$ sprinters enter a $100-$meter dash competition. The track has $6$ lanes, so only $6$ sprinters can compete at a time. At the end of each race, the five non-winners are eliminated, and the winner will compete again in a later race. How many races are needed to determine the champion sprinter? $\textbf{(A)}\mbox{ }36\qquad\textbf{(B)}\mbox{ }42\qquad\textbf{(C)}\mbox{ }43\qquad\textbf{(D)}\mbox{ }60\qquad\textbf{(E)}\mbox{ }72$ [[2016 AMC 8 Problems/Problem 18|Solution ]] ## Problem 19 The sum of $25$ consecutive even integers is $10,000$. What is the largest of these $25$ consecutive integers? $\textbf{(A)}\mbox{ }360\qquad\textbf{(B)}\mbox{ }388\qquad\textbf{(C)}\mbox{ }412\qquad\textbf{(D)}\mbox{ }416\qquad\textbf{(E)}\mbox{ }424$ [[2016 AMC 8 Problems/Problem 19|Solution ]] ## Problem 20 The least common multiple of $a$ and $b$ is $12$, and the least common multiple of $b$ and $c$ is $15$. What is the least possible value of the least common multiple of $a$ and $c$? $\textbf{(A) }20\qquad\textbf{(B) }30\qquad\textbf{(C) }60\qquad\textbf{(D) }120\qquad \textbf{(E) }180$ [[2016 AMC 8 Problems/Problem 20|Solution ]] ## Problem 21 A top hat contains 3 red chips and 2 green chips. Chips are drawn randomly, one at a time without replacement, until all 3 of the reds are drawn or until both green chips are drawn. What is the probability that the 3 reds are drawn? $\textbf{(A) }\dfrac{3}{10}\qquad\textbf{(B) }\dfrac{2}{5}\qquad\textbf{(C) }\dfrac{1}{2}\qquad\textbf{(D) }\dfrac{3}{5}\qquad \textbf{(E) }\dfrac{7}{10}$ [[2016 AMC 8 Problems/Problem 21|Solution ]] ## Problem 22 Rectangle $DEFA$ below is a $3 \times 4$ rectangle with $DC=CB=BA=1$. The area of the "bat wings" (shaded area) is ![[2016_AMC_8_Problems_Problem22.svg]] $\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }4$ [[2016 AMC 8 Problems/Problem 22|Solution ]] ## Problem 23 Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$? $\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$ [[2016 AMC 8 Problems/Problem 23|Solution ]] ## Problem 24 The digits $1$, $2$, $3$, $4$, and $5$ are each used once to write a five-digit number $PQRST$. The three-digit number $PQR$ is divisible by $4$, the three-digit number $QRS$ is divisible by $5$, and the three-digit number $RST$ is divisible by $3$. What is $P$? $\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$ [[2016 AMC 8 Problems/Problem 24|Solution ]] ## Problem 25 A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle? ![[2016_AMC_8_Problems_Problem24.svg]] $\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}$ [[2016 AMC 8 Problems/Problem 25|Solution ]]